Existence of piecewise linear Lyapunov functions in arbitrary dimensions

نویسندگان

  • Peter Giesl
  • Sigurdur Hafstein
چکیده

Lyapunov functions are an important tool to determine the basin of attraction of exponentially stable equilibria in dynamical systems. In Marinosson (2002), a method to construct Lyapunov functions was presented, using finite differences on finite elements and thus transforming the construction problem into a linear programming problem. In Hafstein (2004), it was shown that this method always succeeds in constructing a Lyapunov function, except for a small, given neighbourhood of the equilibrium. For two-dimensional systems, this local problem was overcome by choosing a fan-like triangulation around the equilibrium. In Giesl/Hafstein (2010) the existence of a piecewise linear Lyapunov function was shown, and in Giesl/Hafstein (subm.) it was shown that the above method with a fan-like triangulation always succeeds in constructing a Lyapunov function, without any local exception. However, the previous papers only considered two-dimensional systems. This paper generalises the existence of piecewise linear Lyapunov functions to arbitrary dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise

This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...

متن کامل

Lyapunov Functions for the Stability of a Class of Chemical Reaction Networks

A class of Lyapunov functions is introduced for reaction networks satisfying simple graphical conditions. The Lyapunov functions are piecewise linear and convex in terms of the reaction rates. The existence of such functions ensures the convergence of trajectories toward the equilibria, and guarantee the asymptotic stability of the equilibria with respect to their stoichiometric compatibility c...

متن کامل

Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

We show that for any positive integer d, there are families of switched linear systems— in fixed dimension and defined by two matrices only—that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤ d, or (ii) a polytopic Lyapunov function with ≤ d facets, or (iii) a piecewise quadratic Lyapunov function with ≤ d pieces. This implies that there can...

متن کامل

Robust Lyapunov Functions for Reaction Networks: An Uncertain System Framework

We present a framework to transform the problem of finding a Lyapunov function of a Chemical Reaction Network (CRN) in concentration coordinates with arbitrary monotone kinetics into finding a common Lyapunov function for a linear parameter varying system in reaction coordinates. Alternative formulations of the proposed Lyapunov function is presented also. This is applied to reinterpret previou...

متن کامل

Input-to-state stability and interconnections of discontinuous dynamical systems

In this paper we will extend the input-to-state stability (ISS) framework introduced by Sontag to continuous-time discontinuous dynamical systems adopting Filippov’s solution concept and using non-smooth ISS Lyapunov functions. The main motivation for investigating non-smooth ISS Lyapunov functions is the recent focus on “multiple Lyapunov functions” for which feasible computational schemes are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011